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Abstract

Blood pressure (BP) monitoring is a basic procedure
for the physiological measurement of the cardiovascular
system, especially because high BP, although preventable,
is a major risk for stroke, heart failure, and other seri-
ous conditions. Photoplethysmography (PPG) is a promis-
ing technology developed to allow non-invasive, regular,
or even continuous measurement of blood volume varia-
tion. Recently, some works have tried to use PPG sig-
nals to estimate BP. In this work, we propose a regression
model based on the Category Boosting algorithm (Cat-
Boost) that uses 133 morphological and temporal features
from the PPG signal to estimate the corresponding dias-
tolic and systolic BP. We processed and selected a total
of 50,182 windows of 1,000 samples (sampling rate of
125Hz during 8 seconds) of PPG and BP signals from
the MIMIC-II dataset, distributed into training and test
sets. Three different data cross-validation schemes were
adopted. The model prediction metrics were evaluated
by Mean Error and standard deviation (ME[STD]), and
Pearson’s Correlation Coefficient (R-value). For one of
the validation schemes, we obtained, for the diastolic BP,
0.02[3.77] mmHg with an R-value of 0.93; and for systolic
BP: 0.05[7.84] mmHg with an R-value of 0.93. Our results
meet the AAMI standard and are comparable to the state
of the art. However, we show that these results rely on a
specific validation scheme.

1. Introduction

Hypertension is a major health issue, being among the
highest-ranking death causes worldwide [1], increasing the
risk of heart failure, stroke, and myocardial infarction. As
these outcomes often follow a long period of hypertension
development [2], arterial blood pressure (BP) assessment
is not only critical for diagnosis but its monitoring enables
early lifestyle changes and preventive clinical treatment,

reducing the risks of such outcomes. The gold standard
for BP assessment is the use of a sphygmomanometer by
trained clinical professionals. For non-technical measure-
ments, there are many automatically cuff-based equipment
available, enabling people to have measurements at home.
However, cuff-based devices can cause discomfort if used
frequently and are unfeasible for continuous monitoring.

Photoplethysmography (PPG) has originally been devel-
oped for measuring tissue blood volume, and later adapted
for SpO2 measurement (oximetry) [3]. However, a direct
way to obtain BP from the PPG signal alone is still un-
known and its use for BP estimation is still a challenge.

Several machine learning approaches have been pro-
posed for assessing BP from PPG. Some methods deal with
the raw PPG signal after filtering, usually using 1D con-
volutional neural networks [4, 5] or time-series processing
architectures, such as LSTM [6]. Other methods rely on
manual feature extraction and a regression method, e.g.,
multilayer perceptron [7] and random forest [4]. Results
are encouraging, however, data distribution and validation
conditions are unclear in many works in the literature.

In order to estimate BP from the PPG signal, we pro-
posed a regression model based on the Category Boosting
Algorithm (CatBoost) using a combination of 133 mor-
phological and temporal features and evaluated the perfor-
mance according to three different validation schemes.

2. Materials And Methods

The Multi-Parameter Intelligent Monitoring in Inten-
sive Care II (MIMIC-II) database [8] contains continuous
recordings of several physiological signals obtained from
Intensive Care Unit (ICU) patients of the Beth Israel Dea-
coness Medical Center (BIDMC) from 2001 to 2008.

Kachuee et al [9] proposed a subset of the MIMIC II
dataset: Cuff-Less Blood Pressure Estimation Data Set
(CLBPE). This dataset was specifically designed for BP
estimation purposes, containing PPG, Arterial Blood Pres-
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sure (ABP), and Electrocardiogram (ECG) signals sam-
pled at 125 Hz. In this dataset, as described in [9], all sig-
nals were pre-processed, and regions with unrealistic BP or
heart rate values were discarded. There are 12,000 record-
ings that were equally split in four files (”Part 1.mat”,
”Part 2.mat”, ”Part 3.mat”, ”Part 4.mat”). A major limita-
tion of this dataset is the absence of patient information. It
can be inferred from Kachuee et al. [9,10] that the CLBPE
dataset contains 851 patients, but there is no information
on patient identification of each record in the dataset.

2.1. Signal Pre-processing

In addition to the signal pre-processing performed on
the CLBPE dataset [9], we have filtered the PPG signals
using a Type-II Chebyshev band-pass filter (0.5Hz-10Hz)
of order 4. Also, we removed recordings that were smaller
than 8 minutes. Next, we segmented each recording into
windows of 1,000 samples (sampling rate of 125 Hz dur-
ing 8 seconds) without overlap. Then, we used a signal
quality analysis of each PPG and ABP windows. For this,
in each window, we detected every beat and estimated a
”template” average beat. We calculated Pearson’s correla-
tion coefficient between each beat and the template. Then,
we excluded the window if its mean correlation was lower
than a threshold (0.9). Next, we removed all windows for
which (a) systolic pressure was ≤70 mmHg, (b) diastolic
pressure was ≥141 mmHg or (c) the difference between
systolic and diastolic pressure ≤10 mmHg.

We obtained the systolic and diastolic pressure from the
ABP signal in each window using a peak and trough de-
tector [11]. The median of the peak and trough values of
the ABP signal were considered the label for systolic and
diastolic pressure, respectively. After these steps, we ob-
tained a total of 50,182 PPG windows with an associated
systolic and diastolic pressure.

2.2. Feature extraction

Several characteristic points of each 8-second PPG win-
dow —and its first and second derivatives—are detected
through a procedure adapted from [12]. These are used
to calculate morphological and temporal attributes, which
represent slopes, areas, intensities, amplitudes, and time
spans, according to descriptions provided by [13], result-
ing in 133 features for each PPG window.

2.3. Method Validation

We employed two boost-based machine learning meth-
ods for estimating the BP of each window: CatBoost and
XGBoost.

In the literature, numerous works employed 10-fold
cross-validation strategies to evaluate their BP estimation

algorithms using the CLBPE dataset [6, 14]. However, as
aforementioned, this dataset does not contain patient iden-
tification and a single patient can have several recordings.
Therefore, regardless of the fold validation strategies em-
ployed, the data distribution can present samples from the
same patient both in the training and testing sets, i.e., data
leakage. On the other hand, the CLBPE dataset is split
into 4 different ”.mat” files. Assuming that a patient can
not appear in multiple parts (”.mat” files), we can use a 4-
fold cross-validation scheme, using each file as a fold, to
diminish the data leakage problem.

Hence, three validation schemes were proposed. In the
first one, we randomly split the windows in a 10-fold cross-
validation (WINDOW). In the second, we split the win-
dows into 10-folds taking care that windows from the same
recording did not appear in different folds (RECORD). In
the last one, we split the windows into 4 folds in a way that
windows from the same ”.mat” did not appear in different
folds (PART).

3. Results and Discussion

The BP estimation performance was evaluated using
Pearson’s Correlation Coefficient (ρ), Mean Absolute Er-
ror (MAE), Mean Error (ME) and its standard deviation of
the error (STD) metrics (Table 1). According to the AAMI
standard [15], ME and STD should be lower than 5 mmHg
and 8 mmHg, respectively.

Furthermore, we used the British Hypertension Society
(BHS) guideline [16] (Table 2). In such metric, we eval-
uated the percentage of the MAE error that falls below 5
mmHg, 10 mmHg, and 15 mmHg. A grade (A, B, C, or D)
is given to the estimation method depending on how well
it performs.

Figure 1 shows the scattering of the target versus pre-
diction, (a) and (b), as well as the Bland-Altman plot, (c)
and (d), for SBP and DBP estimation using CatBoost, by
considering PART, RECORD, and WINDOW validation
schemes.

With regard to the AAMI standard and MAE (Table 1),
both algorithms achieved similar performances in differ-
ent validation schemes, even though CatBoost had a slight
advantage. Nevertheless, they also exhibited a substantial
drop in performance as the validation scheme goes from
WINDOW to PART. With CatBoost, for instance, using the
WINDOW validation scheme, the STDs for DBP and SBP
estimation were 3.77 and 7.88, respectively. However, if
we change to the PART validation scheme, the STDs for
DBP and SBP improves to 9.78 and 22.37, respectively.

In accordance with the BHS standard (Table 2), the
results confirm that XGBoost and CatBoost are indeed
analogous regarding the validation scheme, with the latter
showing slightly better values than the former. However,
both reveal, again, a decrease in performance as our val-
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Table 1: Evaluation of BP estimation in the MIMIC-II dataset using the AAMI standard.

Validation scheme Algorithm Diastolic blood pressure Systolic blod pressure
ME ρ STD MAE ME ρ STD MAE

WINDOW XGBoost 0.012 0.891 4.470 3.091 0.059 0.893 9.485 6.721
CatBoost 0.022 0.925 3.767 2.521 0.050 0.929 7.837 5.368

RECORD XGBoost -0.173 0.604 7.962 5.653 -0.852 0.622 16.648 12.463
CatBoost -0.194 0.638 7.618 5.418 -1.166 0.661 15.822 11.774

PART XGBoost -0.381 0.297 10.095 7.658 -0.746 0.219 22.778 18.495
CatBoost -0.257 0.306 9.784 7.524 -1.230 0.218 22.368 18.209

AAMI standard ≤ 5 mmHg - ≤ 8 mmHg - ≤ 5 mmHg - ≤ 8 mmHg -

Table 2: Evaluation of BP estimation in the MIMIC-II dataset with regard to BHS standard.

Validation scheme Algorithm DBP cumulative error (%) SBP cumulative error (%)
5mmHg 10mmHg 15mmHg 5mmHg 10mmHg 15mmHg

WINDOW XGBoost 81.6 96.5 99.0 52.2 78.5 89.9
CatBoost 87.5 97.7 99.4 62.5 85.7 93.7

RECORD XGBoost 57.2 84.6 94.6 29.9 52.4 68.3
CatBoost 59.2 85.4 95.1 32.4 55.1 70.7

PART XGBoost 41.5 72.0 89.2 16.0 31.7 46.8
CatBoost 40.7 73.2 90.1 16.2 32.3 47.6

BHS standard

Grade A 60 85 95 60 85 95
Grade B 50 75 90 50 75 90
Grade C 40 65 85 40 65 85
Grade D <40 <65 <85 <40 <65 <85

a) b)

PART

c) d)

a) b)

c) d)

a) b)

c) d)

WINDOW RECORD

Figure 1: Scattering of the target versus prediction, (a) and (b) and Bland-Altman plot, (c) and (d), for SBP and DBP
estimation using CatBoost in the MIMIC-II database, considering validation schemes WINDOW, RECORD, and PART. µ:
mean; σ: standard deviation; ρ: correlation coefficient.

idation scheme goes from WINDOW to PART. CatBoost,
for example, is classified into Grade A for DBP and Grade
B for SBP in WINDOW, but only into Grade C and D in
PART. This performance reduction when using the PART
validation scheme may indicate that recordings of the same
patient are restricted to the same fold and do not appear in
the other folds.

The same behavior can be observed in the Pearson’s
correlation (Figure 1). Although samples of the WIN-
DOW validation scheme have correlation coefficients of
0.93 and 0.92 for SBP and DBP, respectively, samples of
PART and RECORD validation schemes have only 0.22
and 0.66 for SBP and 0.31 and 0.64 for DBP. Moreover,
the Bland-Altman intervals of agreement get wider as val-

Page 3



idation scheme goes from WINDOW to PART.
Concerning other works in the literature that also use

the MIMIC II dataset, Panwar et al [6] used a 10-fold
cross-validation approach and obtained results that meet
the AAMI and the BHS standard criterion. Meanwhile,
El-Hajj et al. [14], employed a 70%-15%-15% split for
training, validation, and test set, respectively, and got re-
sults near the AAMI standard criterion. However, these
works do not inform if the data was randomly split or split
by recording, which does not allow a direct and fair com-
parison with our work. We did not find any works in the
literature that employed PART cross-validation.

4. Conclusion

We employed a feature-based machine learning method
to predict BP from PPG signals and evaluated it using
three different cross-validation schemes in a pre-processed
MIMIC II dataset (CLBPE). Only in the WINDOW vali-
dation scheme, we were able to meet the AAMI standard
requirements and grades A and B (BHS standard) for both
systolic and diastolic pressure.

Results under validation schemes WINDOW and
RECORD reveal a possible undesirable data leakage effect
that might lead to over-optimistic results that may not hold
in real-life applications. As observed, the pre-exposition
of a learning algorithm to information about the same pa-
tient can lead to better results. Therefore, we recommend
that future works using the CLBPE dataset present their
results using our proposed three-scheme cross-validation
approach: WINDOW, RECORD, and PART. This would
benefit comparison between different methodological ap-
proaches, clarifying their contributions and improvements.
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